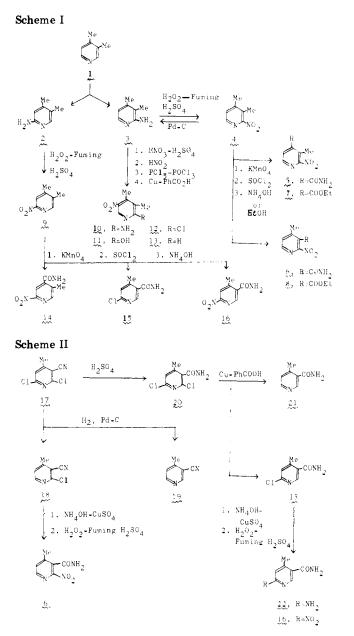
Studies on Anticoccidial Agents. 12. Synthesis and Anticoccidial Activity of Methyl-2(6)-nitro- and -3(5)-nitropyridinecarboxamides¹

Yasuhiro Morisawa,* Mitsuru Kataoka, Toshiaki Sakamoto, Hitoshi Nagahori, Noritoshi Kitano, and Ken-ichi Kusano

Central Research Laboratories, Sankyo Company, Ltd., Shinagawa-ku, Tokyo, Japan. Received July 8, 1977

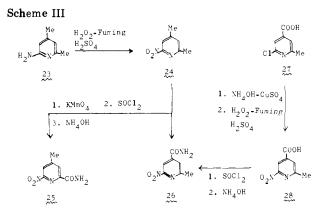

A number of methyl-2- and -3-nitropyridinecarboxamides have been synthesized. It has been established that the presence of at least one hydrogen atom, adjacent to the NO_2 function, is important for anticoccidial activity and introduction of a methyl group to the adjacent position of the $CONH_2$ function sometimes confers enhanced activity. Among the compounds herein, 5- and 6-methyl-2-nitropyridine-4-carboxamides possess optimal anticoccidial activity, being as potent as the parent compound.

In previous papers² we reported that the 2-, 3-, 5-, and 6-nitropyridinecarboxamides, but not the 4-nitro analogue, possess anticoccidial activity against *Eimeria tenella*, and also among methyl-5-nitronicotinamides, the 2- and 4methyl-, but not the 6-methyl-, analogues are significantly effective, showing that the activity is greatly affected by the position of the nitro group and the methyl group. These observations prompted us to extend our synthetic program to elucidate the effect of the methyl moiety in nitropyridinecarboxamides on coccidiostatic activity.

Chemistry. (A) Methyl-2(6)-nitropyridinecarboxamides. Starting from 2,3-, 2,4-, 2,5-, 3,4-, and 3,5-dimethylpyridines, a variety of methyl-2-nitropyridinecarboxamides 5, 6, 14, 16, 25, 26, 36, 40, 41, 46, and 47 were prepared as shown in Schemes I-V and Table I. 3,4-Dimethylpyridine (1) was aminated³ and oxidized with H_2O_2 and fuming H_2SO_4 to give isomeric nitro compounds, 4 and 9. The structure of 3,4-dimethyl-2-nitropyridine (4) was confirmed by catalytic reduction to the known 2amino-3,4-dimethylpyridine hydrochloride³ (3) while the structure of the other isomer, 9, was determined by the fact that 9 differed from 3,4-dimethyl-5-nitropyridine (13), obtainable from 3 by nitration followed by diazotization, hydrolysis, chlorination, and dechlorination. Oxidation of dimethylnitropyridine 4 with KMnO₄, followed by chlorination with SOCl₂ and ammonolysis, gave the isomeric amides 5 and 6, whereas ethanolysis of the acid chlorides gave the ethyl esters 7 and 8. The ester 7 was easily converted to the amide 5 by ammonolysis: however, under the same reaction conditions the isomer 8 was recovered unchanged, possibly because of the steric hindrance of the nitro and the methyl group, thus explaining the individual structures of 5-8. To confirm its structure, 4-methyl-2-nitronicotinamide (6) was prepared by an unequivocal route from 2,6-dichloro-4-methylnicotinonitrile $(17)^4$ through 2-chloro-4-methylnicotinonitrile (18) as shown in Scheme II. A similar synthetic approach was conducted for the preparation of 5-methyl-2-nitroisonicotinamide (14) and 4-methyl-6-nitronicotinamide (16) (Scheme I). The structure of 14 was established by x-ray analysis and that of 16 was identified by preparation from 20 through 6chloro-4-methylnicotinamide (15) as shown in Scheme II.

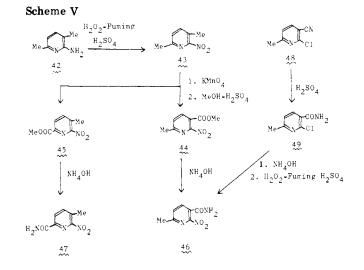
4-Methyl-6-nitropyridine-2-carboxamide (25) and 6methyl-2-nitroisonicotinamide (26) were analogously prepared from 2-amino-4,6-dimethylpyridine (23)⁵ via the nitro compound 24. For confirmation of the structures of these isomeric compounds, 25 and 26, the latter was prepared by another synthetic method; amination of 2chloro-6-methylisonicotinic acid (27)⁶ with NH₄OH and CuSO₄, followed by oxidation with H₂O₂ and fuming H₂SO₄, produced the nitro acid 28. Treatment of the acid 28 with SOCl₂ and then with NH₄OH afforded the amide 26.

For the synthesis of 5-methyl-6-nitronicotinamide (36), 3,5-dimethyl-2-nitropyridine (30) was prepared as usual



by oxidation of 2-amino-3,5-dimethylpyridine $(29)^3$ with H_2O_2 and fuming H_2SO_4 . Oxidation of 30, followed by chlorination and methanolysis, resulted in the formation of the isomeric chloro esters 31 and 32, in which the relative position of the substituents was assigned by nuclear Overhauser effect (NOE) measurements; The 100-MHz NMR spectrum of 31 had aromatic proton doublets at δ 8.13 for C₄-H and 8.81 for C₂-H (J = 2.3 Hz), while the isomer 32 had values of δ 7.95 for C₄-H and 8.31 for C₆-H (J = 2.5 Hz). Irradiation of the ring methyl group

		R ₁				Me	
	O2N	N R2	O2N N R		R1 2N N R2	O2N N	Me
	type I		type II type III		type III	type I	V
No.	Type	R_1	R_2	Method ^a	Yield, % ^b	Mp, °C	Formula ^c
24 25 26 37 38 39 40 41 43 44 45 46 47	I I II II II II III III III III	Me Me CONH ₂ Me COOMe Me CONH ₂ Me COOMe Me CONH ₂ Me	Me CONH ₂ Me Me COOMe Me CONH ₂ Me COOMe Me COOMe Me	A B A I D D A I I D D	$21.9 \\ 9.7 \\ 3.6 \\ 44.5 \\ 13.0 \\ 13.0 \\ 74.0 \\ 91.0 \\ 28.5 \\ 11.1 \\ 22.0 \\ 56.9 \\ 43.4$	$68-69^d$ $184-185^e$ $227-228^f$ $88-89^f$ $72-73^g$ $94-95^g$ $190-191^h$ $167-168^f$ Oil $51-52^i$ $71-72^i$ $225-227^i$ $165-166^i$	$\begin{array}{c} C_{7}H_{8}N_{2}O_{2} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{8}N_{2}O_{4} \\ C_{8}H_{8}N_{2}O_{4} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{8}N_{2}O_{4} \\ C_{8}H_{8}N_{2}O_{4} \\ C_{8}H_{8}N_{2}O_{4} \\ C_{8}H_{8}N_{2}O_{4} \\ C_{8}H_{8}N_{2}O_{4} \\ C_{8}H_{8}N_{2}O_{4} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{7}N_{3}O_{3} \\ C_{7}H_{7}N_{3}O_{3} \\ \end{array}$
50 51	IV IV IV	CN CONH ₂		A F	43.4 15.4 60.6	$52-53^{f}$ 179-180 ^f	$C_{8}H_{7}N_{3}O_{2}$ $C_{8}H_{9}N_{3}O_{3}$

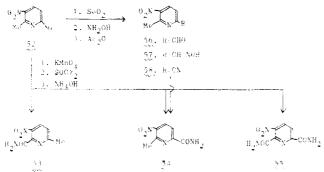

^a The letter refers to the general method given in the Experimental Section. ^b The yield of the analytically pure compounds isolated is given. ^c Satisfactory analyses have been obtained for C, H, and N. ^d From aqueous EtOH. ^e From acetone-petroleum ether. ^f From EtOAc-*n*-hexane. ^g From EtOAc. ^h From EtOAc. ⁱ From EtOAc-petroleum ether. ^j Anal. Calcd for $C_8H_8N_2O_4$: C, 48.98; H, 4.11; N, 14.28. Found: C, 48.60; H, 4.15; N, 13.83.

Scheme IV

at δ 2.44 in 31 resulted in a 14% enhancement of the C₄-H signal and irradiation of the methyl group at δ 2.36 in 32 also resulted in 10 and 6% enhancements of the C₄-H and C₆-H, respectively. These results indicate that 31 has one proton adjacent to the methyl group and 32 has two protons adjacent to this group. Aqueous ammonia converted these chloro esters, 31 and 32, into the amides, 33 and 34. In this route, unexpectedly the nitro group was

replaced by the chlorine atom. Therefore, the intermediate acid was directly esterized with MeOH and H₂SO₄ to give the nitro ester **35** as the only isolable product. Ammonolysis of **35** produced the amide **36**, whose structure was established by conversion to the chloroamide **33** with SOCl₂. Furthermore, structural assignment was reconfirmed by NMR spectral examination of **35**; a 13% NOE enhancement in the C₄-H (δ 8.40, J = 2.0 Hz) and no area enhancement in the C₂-H (δ 8.94, J = 2.0 Hz) were observed when the methyl group at δ 2.56 was irradiated.

2-Methyl-6-nitronicotinamide (40) and 3-methyl-6nitropyridine-2-carboxamide (41) shown in Table I were prepared from 2-amino-5,6-dimethylpyridine⁷ via the isomeric esters 38 and 39, whose structures were determined by NOE. Irradiation of the methyl group at δ 2.93 in 38 had no effect on the doublets at δ 8.09 (J = 8.2 Hz) and 8.49 (J = 8.2 Hz) of the pyridyl protons, whereas irradiation of the methyl group at δ 2.72 in 39 resulted in a 16% enhancement of the C₄-H signal of the pyridyl protons (C₄-H at δ 7.96, J = 8.2 Hz, and C₅-H at δ 8.27, J = 8.2 Hz).


Similar transformations were also effected in the series of 6-methyl-2-nitronicotinamide (46) and 3-methyl-2-

$O_2 N$ 4 r_1 2 N 6 R_2							
No.	R_1	R_2	Method ^a	Yield, % ^b	Mp, $^{\circ}$ C	$Formula^{c}$	
53	2-CONH,	6-Me	В	4.1	$160 - 162^d$	C ₇ H ₇ N ₃ O ₃	
54	2-Me	6-CONH ₂	В	25.8	$170 - 171^{d}$	$C_{1}H_{1}N_{3}O_{3}$	
55	2-CONH,	6-CONH,	В	6.1	$264-266^{e}$	C ₇ H ₆ N ₄ O ₄	
59	2-CONH ₂	5-Me	В	23.4	$212 - 213^{f}$	$C_{7}H_{7}N_{3}O_{3}$	
60	2-Me	5-CONH ₂	В	28.0	$181 - 182^{g}$	$C_{7}H_{7}N_{3}O_{3}$	
61	4-CONH ₂	5-Me	В	31.6	$213 - 215^{f}$	$C_{7}H_{7}N_{3}O_{3}$	
62	2-CONH,	4-Me	Н	30.2	$243 - 244^{g}$	$C_1H_2N_3O_3$	
63	2-Me	4-CONH ₂	Н	52.1	$203-204^{h}$	$C_{7}H_{7}N_{3}O_{3}$	
64	4-Me	6-CONH,	Н	24.0	$180 - 182^{f}$	$\mathbf{C}_{7}\mathbf{H}_{7}\mathbf{N}_{3}\mathbf{O}_{3}$	
65	2.4-Me.	6-COOMe	I	24.5	$108 - 109^{f}$		
66	$2.4 \cdot Me_2$	6-CONH	D	64.5	$145 - 147^{g}$	$C_{8}H_{9}N_{3}O_{3}$	
67	5 - Me	6.CONH	F	71.4	$152 - 153^{f}$	$\mathbf{C}_{7}^{\mathbf{H}}\mathbf{H}_{7}\mathbf{N}_{3}^{\mathbf{J}}\mathbf{O}_{3}^{\mathbf{J}}$	
68	5-Me	6-Br	J	37.9	57-58 ^f	$C_6 H_5 Br N_2 O_2$	
69	5-Me	6-CN	K	53.3	75-76 ^f	$C_7 H_5 N_3 O_2^2$	

R.

 a^{-c} See corresponding footnotes in Table I. d From EtOAc. e From DMF-EtOAc. f From EtOAc-*n*-hexane. g From EtOH. h From EtOH-petroleum ether.

nitropyridine-6-carboxamide (47) starting from 2amino-3,6-dimethylpyridine $(42)^3$ as shown in Scheme V. For elucidation of the individual structures, the amide 46 was prepared from 2-chloro-6-methylnicotinonitrile (48).⁸

2,4-Dimethyl-6-nitronicotinamide (51) was readily obtained from 6-amino-2,4-dimethylnicotinonitrile⁹ by oxidation with H_2O_2 and fuming H_2SO_4 and partial hydrolysis with H_2SO_4 .

(B) Methyl-3(5)-nitropyridinecarboxamides. Starting from 2,4-, 2,5-, 2,6-, 4,5-, and 4,6-dimethylpyridines, methyl-3(5)-nitropyridinecarboxamides 53, 54, 59-63, and 64 were prepared (Table II). Earlier reports^{10,11} described that oxidation of 2,6-dimethyl-3-nitropyridine 52 with KMnO₄ gave 2-methyl-3-nitropyridine-6-carboxylic acid and/or 3-nitropyridine-2,6-dicarboxylic acid. The present work showed that KMnO₄ oxidation of 52 produced three acids, which were converted to two monoamides 53 and 54 and a diamide 55 by chlorination with SOCl₂ and ammonolysis. In order to ascertain the individual structures, 2-methyl-3-nitropyridine-6-carboxamide (54)¹¹ was prepared from 6-formyl-2-methyl-3-nitropyridine (56)¹² by oximation, dehydration with Ac₂O, and partial hydrolysis with H₂SO₄ (Scheme VI).

hydrolysis with H_2SO_4 (Scheme VI). It has been reported¹³ that 2,5-dimethyl-3-nitropyridine was converted to 5-methyl-3-nitropyridine-2-carboxylic acid in two steps by oxidation with SeO_2 and HNO_3 . $KMnO_4$ oxidation of this dimethylnitropyridine gave two acids, which could be transformed to amides **59** and **60** in 23.4 and 28.0% yields, respectively, with $SOCl_2$ and NH_4OH . The former, **59**, was identical with the sample prepared from the known 5-methyl-3-nitropyridine-2carboxylic acid by the same method mentioned above. Similar transformations have been effected in 5-methyl3-nitroisonicotinamide (61) starting from 4,5-dimethyl-3-nitropyridine (13). The structural identification was based on physical data and the fact that compound 61 is not identical with another isomer, 4-methyl-5-nitronicotinamide.^{2a}

The amides 62–64 were prepared from the corresponding acids¹⁰ by treatment with $SOCl_2$ and NH_4OH , the amide 66 was prepared from the acid¹⁴ by esterification and ammonolysis, and 5-methyl-3-nitropyridine-6-carboxamide (67) was obtained from 6-hydroxy-5-methyl-3-nitropyridine¹⁵ by bromination with PBr₃, followed by cyanation¹⁶ with CuCN and hydrolysis.

Biological Results. The target compounds were tested against *E. tenella* using a 1-(4-amino-2-*n*-propyl-5-pyrimidinylmethyl)-2-picolinium chloride hydrochloride (Amprolium) resistant strain according to the previously described procedure¹⁷ and the results, shown in Tables III and IV, were compared with those of the parent nitropyridinecarboxamides. For an ACI above 180, the anticoccidial activity was determined as excellent, 180–160 as marked, 160–140 as moderate, 140–120 as slight, and below 120 as inactive.

2-Nitropyridine-4-carboxamide^{2b} possesses the highest order of activity among the nitropyridinecarboxamides. Introduction of the 5- or 6-methyl group (14 and 26) showed almost the same order of activity, but introduction of the 3-methyl group (5) gave a compound of diminished activity. In the 2-nitropyridine-5-carboxamide derivatives, 4-methyl, 6-methyl, and 4,6-dimethyl compounds (16, 40, and 51) were much more effective than the parent compound, but the isomeric 3-methyl derivative 36 was less active. In the analogues of 2-nitropyridine-6-carboxamide, the structure-activity relationships follow a similar pattern to those observed in the former two series. Introduction of the 5-methyl group (41) adjacent to CONH_2 enhanced the activity, but introduction of the 3-methyl group (47) adjacent to the NO₂ group reduced the activity. The activity of 2-nitropyridine-3-carboxamide was slightly enhanced by introduction of the 4-methyl group (6). Thus, appended methyl groups provided position-dependent effects, which might be caused by either electronic and/or steric interactions.

3-Nitropyridinecarboxamides were also evaluated. For analogues belonging to 3-nitropyridine-4-carboxamide, introduction of the 2-methyl group (63) adjacent to the NO_2 group reduced activity, but the 5-methyl substitution (61), adjacent to the CONH₂ group, contributed greatly Methyl-2(6)-nitro- and -3(5)-nitropyridinecarboxamides

Table III.	Anticoccid	ial Activit	y of O _{2N}	Me 5 CONH2		
		Posi-	Concn			
	Posi-	tion	of drug			
	tion	\mathbf{of}	in feed,			
No.	of Me	CONH ₂	%	ACIa		
2-Nitropy	vridine-4-cai	boxamide	0.015	195		
			0.007	195		
5	3	4	0.015	177		
			0.007	128		
14	5	- 4	0.015	197		
			0.007	186		
2 6	6	4	0.015	196		
			0.007	193		
2-Nitrop	yridine-5-cai	rboxamide	0.007	122		
3 6	3	5	0.015	131		
			0.007	89		
16	4	5	0.015	19 0		
			0.007	172		
40	6	5	0.015	195		
			0.007	173		
5 1	4,6	5	0.015	180		
			0.007	158		
2-Nitron	yridine-6-ca	0.015	164			
47	3	6	0.015	118		
25	4	6	0.015	$172 \\ 172$		
41	5	6	0.015	181		
2-Nitropyridine-3-carboxamide 0.015 135						
6	4	3	0.015 0.015	150		
46	6	3	0.015	120		
	<u> </u>		0.010			

^a ACI = percent survival + percent relative weight gain lesion score - oocyst score.

Table IV.	Anticoccid	ial Activity	0 ₂ N. 7 of	Me 5 CONH2
		Posi-	Concn	
	Posi-	tion	of drug	
	tion	of	in feed,	
No.	of Me	CONH ₂	%	ACI ^a
3-Nitrop	yridine-4-car	0.015	165	
6 3	2	4	0.015	149
61	5	4	0.015	198
			0.007	162
3-Nitrop	yridine-2-cai	0.015	132	
62	4	2	0.015	115
59	5	2	0.015	128
53	6	2	0.015	139
3-Nitrop	yridine-6-cai	0.015	165	
54	2	6	0.015	164
64	4	6	0.015	182
67	5	6	0.015	180
66	2,4	6	0.015	97

^a See footnote a in Table III.

to the activity. In 3-nitropyridine-2-carboxamide, introduction of the 5- or 6-methyl group (59 and 53) resulted in only small changes in its properties, but 4-methyl substitution (62), adjacent to the NO_2 moiety, led to reduction in activity. In the case of 3-nitropyridine-6carboxamide, addition of the 5-methyl group (67) at the ortho position of $CONH_2$ and the 4-methyl group (64) contributed to the activity and the 2-methyl group (54) at the ortho position of NO₂ resulted in only small changes in the activity, but the 2,4-dimethyl group (66), which occupied both ortho positions of NO₂, led to reduction of the activity. From these observations, it can be concluded

that the presence of at least one hydrogen atom adjacent to the NO_2 function is important for the activity and enhanced anticoccidial activity is sometimes conferred by introduction of the methyl group to the adjacent position of the $CONH_2$ function. Among the compounds herein, 5- and 6-methyl-2-nitropyridine-4-carboxamides possess optimal anticoccidial activity, being as potent as the parent compound.^{2a}

Experimental Section

Melting points are uncorrected. IR and NMR were determined on a Perkin-Elmer 221 and a Varian A-60 and HA-100, respectively. Spectral data were consistent with the assigned structures. Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within $\pm 0.3\%$ of the theoretical values. Typical experimental procedures are described.

3,4-Dimethyl-2-nitropyridine (4) and 3,4-Dimethyl-6nitropyridine (9). Following the procedure of Albert et al.,³ 3,4-dimethylpyridine (1, 192 g, 1.79 mol) was aminated at 165-170 °C under N₂ for 8 h with N,N-dimethylaniline (280 mL, 2.21 mol) and NaNH₂ (80 g, 2.05 mol) to give a crystalline mixture of 2-aminodimethylpyridines 2 and 3 (90.0 g, 41.1%)

Method A. A solution of the crude aminodimethylpyridines 2 and 3 (15 g, 0.12 mol) in concentrated H_2SO_4 (60 mL) was added dropwise below 20 °C to a mixture of fuming H_2SO_4 (250 mL) and 30% H_2O_2 (125 mL). The mixture was stirred at 15-18 °C for 15 h, poured into ice-water, neutralized with Na₂CO₃ and extracted with Et₂O. The extract was dried and the solvent was removed to give a yellow crystalline residue, which was chromatographed over silica gel, and each product isolated was recrystallized from EtOAc-*n*-hexane to afford 4 (5.6 g, 30.0%), mp 68-69 °C, and 9 (1.7 g, 9.1%), mp 96-97 °C. Anal. (both compounds, C7H8N2O2) C, H, N.

2-Amino-3,4-dimethylpyridine (3). A solution of 4 (1.52 g, 10 mmol) in MeOH (50 mL) was hydrogenated over 10% Pd/C (1.5 g). After separation of the catalyst, the solvent was removed to leave a crystalline product, which was recrystallized from EtOAc-n-hexane to afford 3 (1.0 g, 80.3%), mp 81-82 °C. The amine hydrochloride had mp 240 °C (lit.³ mp 239-240 °C). Anal. $(C_7H_{10}N_2)$ C, H, N.

3-Methyl-2-nitroisonicotinamide (5) and 4-Methyl-2nitronicotinamide (6). Method B. To a solution of 3,4-dimethyl-2-nitropyridine (4, 19 g, 0.125 mol) in H_2O (1300 mL) containing Na₂CO₃ (1.2 g) was added KMnO₄ (60 g, 0.38 mol) portionwise at 80 °C with vigorous stirring. Stirring and heating were continued for 1 h, and after separation of MnO₂, the reaction mixture was shaken with benzene. The organic layer was washed with H₂O and dried and the solvent was removed to give the starting material recovered (2.1 g, 11.1%). The aqueous layer was concentrated into a small volume and acidified to pH 1.5 with HCl, and the solution was concentrated to dryness to give a crystalline residue. The crude acids containing inorganic matter thus obtained were treated with SOCl₂ (300 mL) under reflux for 3 h. After separation of the insoluble matter, excess reagent was removed and the acid chloride (11.2 g) was stirred with 28% NH₄OH (110 mL) at room temperature for 1 h, neutralized with HCl, and extracted with EtOAc. The extract was dried and the solvent was removed to leave a crystalline residue, which was chromatographed over silica gel eluting with EtOAc-benzene. The first eluate yielded 5 (3.2 g, 14.16%), mp 127-128 °C. The second eluate gave 6 (0.52 g, 2.3%), mp 189 °C. Anal. (both compounds, C₇H₇N₃O₃) C, H, N.

Ethyl 3-Methyl-2-nitroisonicotinate (7) and Ethyl 4-Methyl-2-nitronicotinate (8). Method C. 3,4-Dimethyl-2nitropyridine (4, 4.5 g, 30 mmol) was oxidized with $KMnO_4$ and then chlorinated with $SOCl_2$ as described above. The starting material recovered was 0.8 g. The acid chlorides obtained were added portionwise to cooled EtOH (15 mL) and the mixture was stirred at room temperature for 1 h, diluted with H₂O, neutralized with $NaHCO_3$, and extracted with EtOAc. The extract was dried and the solvent was removed to give an oil (4.1 g), which was chromatographed over silica gel to give 7 (1.2 g, 19.3%) as an oil and 8 (2.1 g, 33.8%) as an oil. Anal. (both compounds, $C_9H_{10}N_2O_4$) C, H, N.

Ammonolysis of Ethyl 3-Methyl-2-nitroisonicotinate (7) and Ethyl 4-Methyl-2-nitronicotinate (8). Method D. (A) A suspension of 7 (0.5 g, 2.4 mmol) in 28% NH₄OH (15 mL) was stirred at room temperature for 24 h. The mixture was neutralized with dilute HCl under cooling and extracted with EtOAc. The extract was dried and the solvent was removed to leave an oil, which was crystallized by addition of *n*-hexane. Recrystallization from EtOAc-*n*-hexane gave 5 (0.23 g, 53.5%), mp 127-128 °C. Anal. ($C_7H_7N_3O_3$) C, H, N.

(B) A suspension of 8 (0.5 g, 2.4 mmol) in 28% NH₄OH (15 mL) was worked up as described above to give the starting material recovered (0.48 g, 96.0%).

2-Chloro-4-methylnicotinonitrile (18). A mixture of 2,6dichloro-4-methylnicotinonitrile⁴ (17, 22 g, 0.118 mol), AcONa (18 g), and PdCl₂ (0.25 g) in MeOH (100 mL) was shaken in a H₂ atmosphere (50 psi) for 1 h. After removal of the catalyst, the solution was concentrated to a small volume, diluted with H₂O, neutralized with NaHCO₃, and extracted with EtOAc. The extract was dried, the solvent was removed, and the residue obtained was chromatographed over silica gel eluting with EtOAc-*n*-hexane (1:1). The first eluate gave 18 (1.3 g, 7.2%), mp 105–108 °C, on recrystallization from EtOAc: NMR (DMF-d₇) δ 2.63 (s, 3 H, C-4 methyl), 7.64 (1, H, d, J = 5.0 Hz), 8.62 (1, H, d, J = 5.0 Hz). Anal. (C₇H₅ClN₂) C, H, Cl, N. The second eluate gave 4-methylnicotinonitrile (19, 10.1 g, 72.3%), mp 44–45 °C (lit.⁴ mp 45–46 °C). Anal. (C₇H₆N₂) C, H, N.

4-Methyl-2-nitronicotinamide (6). A suspension of 18 (1.2 g, 7.9 mmol) in 28% NH₄OH (5 mL) containing CuSO₄·5H₂O (0.12 g, 0.48 mmol) was heated at 170 °C for 20 h in a sealed tube. The cooled reaction mixture was bubbled with H₂S, the precipitated CuS was separated, and the filtrate was concentrated to dryness to give a crystalline residue (1.1 g), which was dissolved in concentrated H₂SO₄ (3.5 mL). This solution was added dropwise to a mixture of 30% fuming H₂SO₄ (19 mL) and 30% H₂O₂ (9 mL), and the mixture was stirred at room temperature for 48 h, poured into ice water, neutralized with Na₂CO₃, and extracted to leave a crystalline residue, which was recrystallized from EtOAc-petroleum ether to give a pure product 6 (0.2 g, 14%), mp 189 °C. Anal. (C₇H₇N₃O₃) C, H, N. IR and NMR spectra were identical with the sample 6 obtained from 4.

2-Amino-3,4-dimethyl-5-nitropyridine (10). 2-Amino-3,4-dimethylpyridine (3, 7.4 g, 60 mmol) was added portionwise under cooling to concentrated H_2SO_4 (60 g), and to this solution concentrated HNO₃ (4.6 mL, d 1.42) was added dropwise below 10 °C. The mixture was stirred at room temperature for 16 h and then the temperature was raised gradually to 95 °C. After stirring was continued at 95 °C for 2 h, the mixture was poured into ice water and neutralized with NH₄OH to give a crystalline product, which was recrystallized from EtOAc to yield 10 (3.9 g. 38.5%), mp 240 °C. Anal. (C₇H₉N₃O₂) C, H, N.

2-Hydroxy-3,4-dimethyl-5-nitropyridine (11). An aqueous solution (2 mL) of NaNO₂ (1.6 g, 23 mmol) was added dropwise below 10 °C to a solution of 10 (2.5 g, 15 mmol) in 2.5 NH₂SO₄ (40 mL), and the mixture was stirred for 30 min. The crystals which deposited were collected and recrystallized from EtOAc to afford an analytically pure sample of 11 (2.2 g, 87.7%), mp 220-222 °C. Anal. ($C_7H_8N_2O_3$) C, H, N.

2-Chloro-3,4-dimethyl-5-nitropyridine (12). A mixture of 11 (2.0 g, 12 mmol) in PCl_5 (3.3 g) and $POCl_3$ (2 mL) was heated at 110–120 °C for 8 h and then poured to ice water, neutralized with NaHCO₃, and extracted with EtOAc. The extract was dried and the solvent was removed to give 12 (1.8 g, 81.5%) as an oil.

3,4-Dimethyl-5-nitropyridine (13). Method E. To a stirred mixture of 12 (7.0 g, 38 mmol) and benzoic acid (14 g, 114.8 mmol) at 150–160 °C was added portionwise Cu powder (10 g). After addition was completed, stirring and heating were continued for 10 min. The mixture was cooled and shaken with aqueous Na₂CO₃ solution and CHCl₃. The CHCl₃ extract was washed with water and dried, and the solvent was removed to give an oil, which was purified by silica gel chromatography to afford 13 (1.5 g, 26.3%), mp 42–43 °C. Anal. (C₇H₈N₂O₂) Č, H, N.

5-Methyl-2-nitroisonicotinamide (14), 6-Chloro-4methylnicotinamide (15), and 4-Methyl-6-nitronicotinamide (16). 3,4-Dimethyl-6-nitropyridine (9, 6.2 g, 40 mmol) was oxidized with KMnO₄ and the acids obtained were treated with SOCl₂ and then with NH₄OH as described in method B. The starting material (0.3 g, 4.8%) was recovered. The products were separated by silica gel chromatography eluting with EtOAc–*n*-hexane. The first eluate afforded 6-chloro-4-methylnicotinamide (15, 0.58 g, 8.4%), mp 166–167 °C, on recrystallization from EtOH. Anal. (C₇H₇ClN₂O) C, H, Cl, N. The second eluate gave a mixture of 14 and 16, which was rechromatographed over silica gel to afford two pure amides. 6-Nitro-3-methylisonicotinamide (14, 0.42 g, 5.7%) had mp 202–204 °C from EtOH. Anal. (C₇H₇N₃O₃) C, H, N. 6-Nitro-4-methylnicotinamide (16, 0.11 g, 1.5%) had mp 178–179 °C from EtOH. Anal. (C₇H₇N₃O₃) C, H, N.

2,6-Dichloro-4-methylnicotinamide (20). Method F. A solution of 2,6-dichloro-4-methylnicotinonitrile (17, 3.0 g, 16 mmol) in concentrated H_2SO_4 (10 mL) was stirred at 100 °C for 1 h. poured into ice water, made alkaline with NaHCO₃, and extracted with EtOAc. The extract was washed with water and dried, and the solvent was removed to leave a crystalline residue. Recrystallization from EtOAc-*n*-hexane gave a pale yellow crystalline product (20, 2.3 g, 69.7%), mp 173–175 °C. Anal. ($C_7H_6Cl_2N_2O$) C. H, Cl, N.

6-Chloro-4-methylnicotinamide (15). The dichloropyridine 20 (1.0 g, 4.9 mmol) was treated with Cu powder (1.25 g, 20 mmol) and benzoic acid (1.75 g, 15 mmol) as described in method E. The products were separated by silica gel chromatography to give three compounds. The least polar substance was the starting material 20 (0.21 g, 21.3%), mp 173-175 °C. The second eluate gave 15 (0.12 g, 14.5%), mp 169-170 °C, on recrystallization from Et-OAc-*n*-hexane: NMR (DMF-d₇) δ 2.47 (3 H, s, C-4 methyl), 7.3-8.2 (2 H, br, CONH₂), 7.42 (1 H, s), 8.45 (1 H, s). Anal. (C₇H₇ClN₂O) C, H, Cl, N. The last eluate gave 4-methyl-incotinamide (21, 0.012 g, 1.8%), mp 166-167 °C (lit.⁴ mp 167-167.5 °C), on recrystallization from EtOH. Anal. (C₇H₈N₂O) C, H, N.

6-Amino-4-methylnicotinamide (22). Method G. A mixture of 15 (7.2 g, 42 mmol) and 28% NH₄OH (25 ml) containing CuSO₄·5H₂O (0.7 g, 2.8 mmol) was heated at 170 °C for 16 h in a sealed tube and cooled to give a crystalline product, which was separated and recrystallized from EtOH-*n*-hexane to afford 22 (4.5 g, 70.5%), mp 189–191 °C dec. Anal. ($C_7H_9N_3O$) C, H, N.

4-Methyl-6-nitronicotinamide (16). This material was prepared in 23.1% yield from 22 by method A and was recrystallized from EtOH: mp 178–180 °C. Anal. $(C_7H_7N_3O_3)$ C, H, N.

6-Methyl-2-nitroisonicotinic Acid (28). A mixture of the chloro acid 27⁶ (4.0 g, 23 mmol), 28% NH₄OH (20 mL), and CuSO₄·5H₂O (0.4 g) was heated at 155 °C for 20 h in a sealed tube. To the cooled reaction mixture was added Na₂S, and precipitated CuS was separated. The filtrate was concentrated into dryness and the residue was dissolved in water and acidified to pH 4.0 with HCl to give 2-amino-6-methylisonicotinic acid (2.7 g, 76.2%), mp 250 °C. Anal. (C₇H₈N₂O₂) C, H, N.

The amino acid was oxidized with H_2SO_4 and H_2O_2 (method A) to nitro acid 28 in a 29.3% yield, mp 169–170 °C dec, on recrystallization from water. Anal. ($C_7H_6N_2O_4$) C, H, N.

6-Methyl-2-nitroisonicotinamide (26). Method H. The acid 28 (1.0 g, 5.5 mmol) was treated with SOCl₂ (20 mL) under reflux for 3 h and the excess SOCl₂ was removed to give an oil, which was added portionwise to cooled 28% NH₄OH (15 mL). After 1 h, the mixture was neutralized with HCl and extracted with EtOAc. The extract was dried, the solvent was removed, and the residue was recrystallized from EtOAc-*n*-hexane to give 26 (0.3 g, 30.0%), mp 227-228 °C. Anal. (C₇H₇N₃O₃) C, H, N.

3,5-Dimethyl-2-nitropyridine (30). This pale yellow oily compound was prepared in 64.0% yield from 29^3 by method A. Anal. ($C_7H_8N_2O_2$) C, H, N.

Methyl 6-Chloro-5-methylnicotinate (31) and Methyl 2-Chloro-5-methylnicotinate (32). These compounds were obtained in 26.7 and 13.8% yields, respectively, from dimethylnitropyridine 30 by method C. Compound 31 had mp 73-74 °C on recrystallization from EtOAc-*n*-hexane. Compound 32 was an oily material. Anal. (both compounds, C₈H₈ClNO₂) C, H, Cl, N.

Methyl 5-Methyl-6-nitronicotinate (35). Method I. Dimethylnitropyridine 30 (5.0 g, 33 mmol) was oxidized with $KMnO_4$ as described in method B. After extraction of the starting material (1.5 g, 9.9%) recovered with EtOAc, the aqueous solution was

Analogues of Ungeremine

concentrated and acidified to give crystalline products. The crude acids were esterified with MeOH (150 mL) containing concentrated H_2SO_4 (2 mL) under reflux for 3 h. The reaction mixture was concentrated into dryness, diluted with water, made alkaline with Na₂CO₃, and extracted with EtOAc. The crystalline residue after evaporation of the solvent was recrystallized from EtOAc-*n*-hexane to give **35** (2.2 g, 34.4%), mp 104–106 °C. Anal. (C₈H₈N₂O₄) C, H, N.

6-Chloro-5-methylnicotinamide (33). (A) Treatment of **31** (0.5 g, 2.7 mmol) with 28% NH₄OH at room temperature for 16 h gave **33** (0.28 g, 60.9%), mp 211–212 °C. Anal. ($C_7H_7ClN_2O$) C, H, Cl, N.

(B) Nitronicotinamide **36** (0.2 g, 1.0 mmol) was refluxed in $SOCl_2$ (10 mL) for 3 h. The IR and NMR spectra of the compound (0.07 g, 37.2%), mp 211-212 °C, were identical with that of **33** obtained above.

2-Chloro-5-methylnicotinamide (34). This compound was prepared in 48.8% yield from the ester 32 using the procedure described above: mp 141–143 °C. Anal. ($C_7H_7ClN_2O$) C, H, Cl, N.

5-Methyl-6-nitronicotinamide (36). By a similar method described above, 36 was prepared from 35 in 74% yield, mp 196–198 °C. Anal. $(C_7H_7N_3O_3)$ C, H, N.

2-Chloro-6-methylnicotinamide (49). This compound was prepared from 48 in 64.5% yield by method F: mp 176–178 °C. Anal. ($C_7H_7ClN_2O$) C, H, Cl, N.

6-Methyl-2-nitronicotinamide (46). By methods G and A 46 was prepared from 49 in 11% yield, mp 225-227 °C. Anal. (C₇H₇N₃O₃) C, H, N. The IR was superimposable with that of 46 obtained from 44.

2-Methyl-3-nitropyridine-6-carboxamide (54). To a solution of NH₂OH in 90% EtOH (40 mL), prepared from NH₂OH-HCl (0.6 g, 8.5 mmol) and NaOAc (0.7 g, 8.5 mmol), was added portionwise a solution of the aldehyde 56^{12} (1.8 g, 10 mmol). The mixture was stirred at 80 °C for 30 min and cooled to give a crystalline product 57 (1.3 g, 66.4%), mp 217-219 °C. Anal. (C₇H₇N₃O₃) C, H, N.

A mixture of 57 (1.3 g, 7 mmol) and Ac₂O (10 mL) was refluxed for 12 h, cooled and poured into ice-water, made alkaline with Na₂CO₃, and extracted with CHCl₃. The brown oily residue after removal of the solvent was purified by silica gel chromatography to give a pale yellow oil, 58 (1.0 g, 85.5%). Anal. (C₇H₅N₃O₂) C, H, N.

Compound 58 (1.0 g, 6 mmol) was hydrolyzed with concentrated H_2SO_4 as described in method F and the product was recrystallized from EtOAc to give 54 (0.9 g, 81.1%), mp 170–171 °C. Anal. (C₇H₇N₃O₃) C, H, N. The IR spectrum of the compound was identical with that of 54 obtained from dimethylnitropyridine 52 by method B.

6-Bromo-5-methyl-3-nitropyridine (68). Method J. A mixture of 6-hydroxy-5-methyl-3-nitropyridine¹⁵ (9.0 g, 58 mmol) and PBr₃ (45 mL) was heated at 130 °C for 2 h, cooled and poured into ice-water, made neutral with NaHCO₃, and extracted with EtOAc. The extract was dried and the solvent was removed to give a crystalline residue. Recrystallization from EtOAc-n-hexane gave 68 (4.8 g, 37.9%), mp 57-58 °C. Anal. ($C_6H_5BrN_2O_2$) C, H, Br, N. From the mother liquor, the starting material (2.5 g, 27.8%) was recovered.

6-Cyano-5-methyl-3-nitropyridine (69). Method K. A mixture of 68 (2.0 g, 9 mmol) and CuCN (1.8 g, 20 mmol) was heated at 160–165 °C for 3 h, cooled, and extracted with EtOAc. The extract was decolorized with carbon and concentrated into a small volume, and addition of *n*-hexane gave 69 (0.8 g, 53.3%), mp 75–76 °C. Anal. ($C_7H_5N_3O_2$) C, H, N.

Acknowledgment. We wish to express our gratitude to Dr. Ko Arima, Director of these Laboratories, to Dr. K. Murayama, Assistant Director, and to Dr. N. Soma for the encouragement and discussions. We are also indebted to Mr. K. Sato and Miss T. Kogure for their assistance in the biological evaluation. Special thanks are due to Dr. C. Tamura and Mr. T. Hata for providing an x-ray crystallographic analysis of compound 14 and to Mr. H. Kuwano for measuring the NMR spectra.

References and Notes

- (1) Presented in part at the 26th IUPAC, Tokyo, Japan, Sept 7, 1977.
- (2) (a) Y. Morisawa, M. Kataoka, and N. Kitano, J. Med. Chem.,
 20, 483 (1977); (b) Y. Morisawa, M. Kataoka, N. Kitano,
 and T. Matsuzawa, J. Med. Chem., 20, 129 (1977).
- (3) A. Albert and R. E. Willette, J. Chem. Soc., 4063 (1964).
- (4) J. M. Bobbitt and D. A. Scola, J. Org. Chem., 25, 560 (1960).
- (5) T. Takahashi and H. Saikachi, J. Pharm. Soc. Jpn., 62, 40 (1942).
- (6) J. C. Bardhan, J. Chem. Soc., 2223 (1929).
- (7) A. Dornow and E. Rohe, Chem. Ber., 93, 1092 (1960).
- (8) L. A. Perez-Medina, R. P. Mariella, and S. M. McElvain, J. Am. Chem. Soc., 69, 2574 (1947).
- (9) K. Sato, M. Ohashi, T. Amakasu, and K. Takeda, Bull. Chem. Soc. Jpn., 42, 2319 (1969).
- (10) E. V. Brown and R. H. Neil, J. Org. Chem., 26, 3546 (1961).
- (11) L. Achremowicz, Rocz. Chem., 46, 307 (1972); Chem. Abstr., 77, 5295z (1972).
- (12) Z. Skrowaczewska and H. Ban, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 9, 213 (1961); Chem. Abstr., 59, 7474c (1963).
- (13) L. Achremowicz, Rocz. Chem., 47, 2367 (1973); Chem. Abstr., 80, 133200p (1974).
- (14) L. Achremowicz and Z. Skrowaczewska, Rocz. Chem., 39, 1417 (1965); Chem. Abstr., 64, 17530c (1966).
- (15) G. F. Hawkins and A. Roe, J. Org. Chem., 14, 328 (1949).
- (16) L. C. Craig, J. Am. Chem. Soc., 56, 231 (1934).
- (17) Y. Morisawa, M. Kataoka, T. Watanabe, N. Kitano, and T. Matsuzawa, J. Med. Chem., 17, 1083 (1974).

Antileukemic Activity of Ungeremine and Related Compounds. Preparation of Analogues of Ungeremine by a Practical Photochemical Reaction¹

Robert K.-Y. Zee-Cheng, Shou-Jen Yan, and C. C. Cheng*

Midwest Research Institute, Kansas City, Missouri 64110. Received August 9, 1977

A number of alkoxypyrrolophenanthridinium salts and their analogues related to the antileukemic alkaloid ungeremine were prepared by a practical photochemical cyclization. The importance of the quaternary nitrogen atom and of alkoxy groups, the planarity of a molecule, and steric considerations relative to antileukemic activity are discussed.

Although both the tetraalkoxydibenzo[a,g]quinolizinium salts 1, such as coralyne,²⁻⁷ and the tetraalkoxybenzo-[c]phenanthridinium salts 2, such as nitidine,⁸⁻¹⁰ are alkoxyisoquinoline derivatives which possess activity against leukemias L1210 and P388, one structural difference is worthy of notice: the dibenzoquinolizinium salts 1 contain a relatively stabilized, "locked-in" quaternary nitrogen, wherein the N atom is at a bridgehead position of the ring structure. On the other hand, in the benzophenanthridinium salt series 2, the quaternary nitrogen is created by alkylation after the ring system is formed. In aqueous solution the alkyl group on the quaternary nitrogen species